Trees, Ultrametrics, and Noncommutative Geometry
نویسندگان
چکیده
Noncommutative geometry is used to study the local geometry of ultrametric spaces and the geometry of trees at infinity. Connes’s example of the noncommutative space of Penrose tilings is interpreted as a non-Hausdorff orbit space of a compact, ultrametric space under the action of its local isometry group. This is generalized to compact, locally rigid, ultrametric spaces. The local isometry types and the local similarity types in those spaces can be analyzed using groupoid C∗-algebras. The concept of a locally rigid action of a countable group Γ on a compact, ultrametric space by local similarities is introduced. It is proved that there is a faithful unitary representation of Γ into the germ groupoid C∗-algebra of the action. The prototypical example is the standard action of Thompson’s group V on the ultrametric Cantor set. In this case, the C∗-algebra is the Cuntz algebra O2 and representations originally due to Birget and Nekrashevych are recovered. End spaces of trees are sources of ultrametric spaces. Some connections are made between locally rigid, ultrametric spaces and a concept in the theory of tree lattices of Bass and Lubotzky.
منابع مشابه
ar X iv : m at h / 06 05 13 1 v 1 [ m at h . O A ] 4 M ay 2 00 6 Trees , Ultrametrics , and Noncommutative Geometry
Noncommutative geometry is used to study the local geometry of ultrametric spaces and the geometry of trees at infinity. Connes's example of the noncommutative space of Penrose tilings is interpreted as a non-Hausdorff orbit space of a compact, ultrametric space under the action of its local isometry group. This is generalized to compact, locally rigid, ultrametric spaces. The local isometry ty...
متن کاملar X iv : m at h / 06 05 13 1 v 2 [ m at h . O A ] 1 1 Ju n 20 07 Trees , Ultrametrics , and Noncommutative Geometry
Noncommutative geometry is used to study the local geometry of ultrametric spaces and the geometry of trees at infinity. Connes's example of the noncommutative space of Penrose tilings is interpreted as a non-Hausdorff orbit space of a compact, ultrametric space under the action of its local isometry group. This is generalized to compact, locally rigid, ultrametric spaces. The local isometry ty...
متن کاملAffine and projective tree metric theorems
The tree metric theorem provides a combinatorial four point condition that characterizes dissimilarity maps derived from pairwise compatible split systems. A related weaker four point condition characterizes dissimilarity maps derived from circular split systems known as Kalmanson metrics. The tree metric theorem was first discovered in the context of phylogenetics and forms the basis of many t...
متن کاملSubdominant matroid ultrametrics
Given a matroid M on the ground set E, the Bergman fan B̃(M), or space of M -ultrametrics, is a polyhedral complex in RE which arises in several different areas, such as tropical algebraic geometry, dynamical systems, and phylogenetics. Motivated by the phylogenetic situation, we study the following problem: Given a point ω in RE , we wish to find an M -ultrametric which is closest to it in the ...
متن کاملOrthology relations, symbolic ultrametrics, and cographs.
Orthology detection is an important problem in comparative and evolutionary genomics and, consequently, a variety of orthology detection methods have been devised in recent years. Although many of these methods are dependent on generating gene and/or species trees, it has been shown that orthology can be estimated at acceptable levels of accuracy without having to infer gene trees and/or reconc...
متن کامل